
Abstract- Models of attention and saccade target selection 
propose that within the brain there is a topographic map of visual 
salience that selects, through a winner-take-all mechanism, 
locations for further processing.  The results of a series of recent 
experiments in monkeys performing pop-out visual search tasks 
suggest that the frontal eye field (FEF) functions as a map of visual 
salience.  FEF is located at the interface of sensory and motor 
processing and participates in the transformation of visual 
information into a command to move the eyes.  Visually responsive 
neurons in FEF identify conspicuous objects in a search array 
regardless of the feature that renders conspicuousness.  
Furthermore, selection occurs at a constant interval following 
search array presentation and is dissociated from saccade 
production.  The finding of a visual salience map in FEF validates 
models of visual selection and can serve to guide future empirical 
and theoretical investigations. 
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I. INTRODUCTION 

 
Vision is a dynamic process.  It is dependent on rapid eye 

movements called saccades that redirect the fovea, the high 
acuity region of the retina, onto informative elements in the 
visual scene.  Before each saccade our eyes remain stable for 
about 200 milliseconds while visual processing takes place.  
During this period of fixation, our brains must decide what 
object to look at next and then prepare and execute the saccade. 

Gaze is often directed to conspicuous objects that stand out 
from the background.  Visual conspicuousness occurs when an 
object has a unique feature (e.g. color, luminance, orientation, 
motion, size) that sets it apart from the rest of the image.  The 
term “pop-out” is often used to describe this capturing of 
attention through a bottom-up selection process.  Bottom-up 
refers to the automatic allocation of attention based exclusively 
on the properties of the image.  In contrast, top-down refers to 
selection based on cognitive factors such as the goals and 
knowledge of the viewer (reviewed in [1]).   
 In 1985 Koch and Ullman introduced the idea of a salience 
map to accomplish visual selection [2].  A salience map is an 
explicit two-dimensional map that encodes the salience of 
objects in the visual environment.  Salience can be derived 
from both bottom-up and top-down factors.  A winner-take-all 
competition within this map gives rise to a single location that 
corresponds to the most salient object that can, but need not 
necessarily, be the target for the next eye movement (reviewed 
in [3]).  Most models of visual search have incorporated the 
idea of a salience map within the brain to guide covert attention 
[4], [5], [6], [7], and overt gaze shifts [8], [9], [10]. 
 The spatial pattern of activity across the salience map must 
be able to localize the most salient object regardless of what 

feature or combination of features is responsible for its salience.  
Thus, the neural substrate of the salience map cannot itself be 
sensitive to specific visual features; otherwise activation could 
be attributed to the specific feature rather than overall salience.  
In the models mentioned above, specific features of the image 
are encoded in parallel at lower levels of the system within 
multiple feature maps.  These feature maps then converge onto 
one map of visual salience.  
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Does such a salience map actually exist in the brain?  
Recent work has pointed to brain structures within the 
visuomotor system that may encode visual salience.  Among 
these are the pulvinar [11], the posterior parietal cortex (PP) 
[12], [13], [14], the superior colliculus [9], [15], and the frontal 
eye field (FEF) [16], [17] (Fig. 1).  This review will focus on 
evidence from the frontal eye field. 

 
II. FRONTAL EYE FIELD 

 
 The frontal eye field (FEF) is ideally positioned to 

contain a map of visual salience for the purpose of guiding eye 
movements (Fig. 1).  FEF receives topographically organized 
converging inputs from multiple extrastriate visual cortical 
areas [18].  Roughly half of FEF neurons have visual responses 
[19], [20], [21].   The output of FEF is from a population of 
neurons, called movement neurons, that are located in layer 5 
and discharge specifically before and during eye movements 
[20], [22].  FEF movement neurons send an eye movement 
command to the superior colliculus [23] and parts of the neural 
circuit in the brainstem that generates saccades [24].   

 

 
Fig. 1. Simplified schematic of anatomical connections within the visuomotor 
system of the monkey.   Visual information from multiple visual cortical areas 
converges onto the frontal eye field.  The frontal eye field sends an eye 
movement command to the superior colliculus and brainstem saccade 
generator, which sends a motor signal through the cranial nerves to the eye 
muscles. 
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Neurons in FEF have spatially defined response fields and 
FEF is topographically organized.  The ventrolateral part of 
FEF represents central regions of visual space and electrical 
stimulation of this region evokes short amplitude saccades.  The 
dorsolateral part of FEF represents peripheral regions of visual 
space and electrical stimulation of this region evokes larger 
amplitude saccades [20], [25]. 

The visual cortex is organized into functionally specialized 
areas that contain neurons that are broadly tuned to one or a few 
feature dimensions [26], [27].  The processing in these areas 
corresponds conceptually to the feature maps in models of 
visual search [2]-[9].  As a result of the extensive convergence 
from extrastriate visual cortex, the visually responsive neurons 
in FEF do not exhibit selectivity for stimulus features [28], 
[29], but instead exhibit activation that represents visual 
salience.  The remainder of this paper will review recent work 
that supports this view. 

 
III. SACCADE TARGET SELECTION 

A. Target selection during visual search 
 

The visual search paradigm has been used extensively to 
investigate visual selection and attention [4], [30].  In a visual 
search task, multiple stimuli are presented, and from among 
them a target is discriminated.    To  investigate  how  the  brain 

 
 Fig. 2. Visual search tasks.  Three different pop out search tasks were used.   
The tasks were run in separate blocks of trials.  Monkeys began each trial by 
fixating the central spot.  The sequence of each task is shown on the left.  Eye 
position traces are shown on the right indicating the monkey’s behavior during 
each task.  Target location was randomized from trial to trial.  A.  Go search 
task.  A search array appeared and the monkey was rewarded for making a 
saccade to the oddball.  B.  Nogo search task.  Monkeys were rewarded for 
maintaining fixation on the central spot for the entire trial.  Monkeys did not 
indicate location of target in this task.  C.  Search-step task.  Most trials were 
the same as in go search (A).  On the remaining trials the target swapped 
positions with a distractor after a short delay called the target step delay and 
monkeys were rewarded for shifting gaze to the new target.  On search-step 
trials monkeys either compensated for the target step or failed to compensate.  
Noncompensated saccades were typically followed by a second corrective 
saccade.  

selects targets for visually guided saccades, recordings of 
neural activity were made in the FEF of monkeys trained to 
shift gaze to an oddball target stimulus among identical 
distractor stimuli (e.g. red target among green distractors) (Fig. 
2).  This task is an example of pop-out search, and therefore is 
controlled by a bottom-up selection process. 

Initially, saccade target selection in FEF was investigated 
using a go search task (Fig. 2A) [28], [31].  It was found that 
most FEF visually responsive neurons responded initially 
indiscriminately to the target or the distractor of the search 
array in their receptive field.  However, before saccades were 
generated, a discrimination process took place by which most 
visually responsive neurons ultimately signaled the location of 
the oddball stimulus (Fig. 3A).  Thus, the activity of FEF visual 
neurons does not represent specific features of objects, but 
rather reflects the evolution of the visual selection or saccade 
preparation processes. 

 
B. Timecourse of target selection 
  

Having found that it was possible to observe saccade target 
selection in the activity of FEF visual neurons, an analysis was 
carried out to determine when the selection was accomplished 
and the time of target discrimination was related to when the 
saccade was made [32].    It was found that FEF visual  neurons 

 
Fig. 3. Visual selection of a conspicuous target.  The neural activity of a 

single FEF visual neuron is shown following presentation of a pop-out search 
array during (A) GO search and (B) NOGO search.   Each plot shows the 
activation when the oddball stimulus appeared in the receptive field (RF) (thick 
line) and when distractors appeared in the receptive field (thin line).  The trials 
are aligned on the time of search array presentation.  A.  The time course of 
activation during a block of GO search trials.  The activation during subsets of 
trials in which reaction times (RT) were short or long are shown separately.   
The plots of neural activity end at the mean reaction time for each group.  The 
ranges of reaction times for the short and long trials are indicated across the top.  
B.  The time course of activity during a block of NOGO trials.  The times of 
target discrimination (solid arrows) were approximately the same in all three 
subsets of trials showing dissociation between the visual selection of a stimulus 
in FEF and the production of saccades (modified from [15]). 
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discriminate the target from a distractor in a pop-out search 
array at a fairly constant interval after search array presentation 
(Fig. 3A).  In other words the time at which the target of the 
saccade was identified did not predict when the eyes moved.  
This finding suggests that the target selection process in FEF is 
more closely linked to visual processing than to saccade 
production. 

 
III. DISSOCIATION OF VISUAL SELECTION FROM SACCADES 

A. Visual selection without saccades 
 
 To examine further the dissociation of visual selection in 
FEF from saccade production, Thompson et al. [33] tested the 
hypothesis that the selection observed in FEF does not require 
saccade planning and execution.  FEF activity was recorded 
while monkeys were instructed to maintain fixation during 
presentation of the pop-out search array (Fig. 2B).  Although no 
saccade was made to the oddball, FEF neurons still 
discriminated the oddball from distractors at the same time and 
to the same degree as when a gaze shift was produced (Fig. 
3B).  Thus, the visual selection observed in FEF identifies 
potential targets for saccades, but does not require the 
generation of saccades.   
 
B. Visual selection with competing saccade targets 
 
 The nogo search experiment [33] showed that the visual 
selection process in FEF is not dependent on the production of 
a saccade.  However, because monkeys had been trained to 
make saccades to the target, it could be argued that the 
observed selection reflected some kind of latent saccade 
programming.  The search step task (Fig. 2C) was designed to 
test this possibility and to ultimately determine if the selective 
activity in FEF reflects perceptual or motor processes [34]. 
 In the search-step task most trials were identical to go 
search, but on about a third of the trials the target unexpectedly 
switched places with a distractor.  The monkey’s task was to 
shift gaze to the new target location to receive a juice reward.  
The timing of the target step was adjusted so that the monkeys 
were able to compensate for the target step on about half the 
trials.  On the remaining trials the monkeys did not compensate 
for the target switch and initially looked at the original target 
location and were not rewarded.   The question to be answered 
was: Does the selective activation reflect the location of the 
pop-out target or does the selective activation predict the 
monkey’s impending eye movement?  The answer is that the 
selection reflects the visual stimulus, not the monkey’s 
behavior.   

Figure 4 shows the typical results.  The early phase of the 
response during search-step trials was identical to the response 
elicited by a distractor during go search trials; the early 
nonselective visual activity was followed by suppression.  This 
is because the stimulus conditions were identical prior to the 
target step.  The activation grew markedly following the target 
step.  Furthermore, the growth of activity on trials in which 
monkeys compensated with a saccade to the final target located 

 

 
Fig. 4.  Frontal eye field visual neuron.  A.  Activation when the target (filled) 
or distractors (open) fell in the receptive field.  Following the initial 100 msec 
of activation that did not discriminate target from distractor, the activity was 
modulated strongly.  The response to the distractor was suppressed, and the 
response to the target grew.  B.  Averaged activity on compensated (thick 
black) and non-compensated (dotted) target-step trials when the distractor in the 
receptive field unexpectedly became the target compared with activity on no-
step trials when distractors remained in the receptive field (thin black).  In both 
compensated and noncompensated trials the neuron responded equally strongly 
to the unexpected appearance of the target in the receptive field.  The fact that 
the activity before the mean noncompensated saccadic reaction time (vertical 
dashed line) was indistinguishable for the search-step trials with opposing 
saccade directions means that the activity of this neuron could not be involved 
in saccade production.  Only presaccadic spikes were used in constructing the 
response. 

 
in the receptive field was identical to the growth of activity on 
trials in which monkeys failed to compensate and produced a 
saccade to the original target located outside the receptive field.  
In other words, the activity of this neuron represented 
accurately the new location of the target regardless of whether 
compensated or noncompensated saccades were produced.  
This is strong evidence that this selection process is distinct 
from immediate saccade production.  

These findings suggest that FEF may play a role in covert 
orienting of visual attention as well as overt saccade generation.  
This conclusion is supported by psychophysical studies 
showing that attention is allocated automatically to the pop-out 
oddball in a search array [35] and by recent brain imaging 
studies showing that a region including FEF in human frontal 
cortex is activated in association with both attention and 
saccade tasks [36], [37]. 
  

IV. CONCLUSION 
 

Models of visual attention and saccade target selection posit 
the existence of a map of visual salience in the brain that 
specifies locations for further processing based on the 
properties of the image.  The stage of processing represented by 
the salience map is distinct from motor preparation processes 
because it may or may not lead to an overt orienting response 
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such as a saccade.  The characteristics of the visual selection 
observed in the population of FEF visually responsive neurons 
are consistent with it being a salience map.  FEF visual neurons 
exhibit a selective response for conspicuous stimuli at a time 
that is linked to the presentation of the visual stimulus.  Also, 
visual selection occurs regardless eye movement behavior.    It 
seems clear that a functional salience map exists in FEF, and 
further work will determine how this map may be distributed 
across other visuomotor areas such as the posterior parietal 
cortex and the superior colliculus.  Nevertheless, the idea of a 
salience map appears to be a physiologically sound theoretical 
construct that will be useful in guiding future theoretical and 
empirical investigations. 
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